3.8 Impact on Existing Structures

The record drawings on this page detail the construction methodology that was used to install the ramp connecting the existing link span in the footbridge, and the vertical support and framing around the stair. The drawings also show the removal of a section of the footbridge girder to accommodate the new ramp, as well as the installation of additional structural supports.

When designing the connection of the new ramp to the stairs, it was important to maintain a smooth transition and avoid any abrupt changes in level. The drawings illustrate how the new ramp was designed to seamlessly integrate with the existing structure, ensuring a safe and accessible transition for passengers.

Figures 1-5 show sections of the girder removed on both footbridges to insert the new ramps and relocate the stairs. The drawings also provide details on the installation of the vertical supports and the repositioning of the existing stair.

Figure 6: Key plan of modifications to the footbridge and stair structures.
3.9 Dynamic Passenger Modelling of Potential
Gateline and Passenger Lift Works

A dynamic passenger model of the potential works to the existing ticket hall and platform 1 passenger lift have been carried out by Halcrow.

Thermographs shown on the opposite page are an extract from the Halcrow model that aims to show passenger movement within the station. The images demonstrate that the combination of works appear to evenly distribute the passenger movements from the ticket hall to the footbridge and platform stairs.

Interpretation of Dynamic Passenger Modelling showing Areas of Congestion

Areas of Passenger Congestion are shown in red together with primary directions of movement. Existing Condition

The diagrams on this page are an extract from the dynamic passenger modelling carried out by Halcrow.

The dynamic passenger model of the existing conditions shows a congested fan out of the location of the new ticket hall entrance. It is considered that the congestion is influenced by passenger movement from the existing ticket hall, the footbridge and additional passenger movement from and to platform 1.

By increasing the number of gates, and reducing the space away from the platform 1 entrance, the passenger movements are directed and the space of the concourse space is utilised for the general public, centring around the ticket hall entrance.
4 TICKET HALL REFURBISHMENT
4.1 External Refurbishment

The white Suffolk brickwork of the station building is in need of cleaning to remove general staining from the weather, reinforced by its proposed that the existing wooden cladding is to be treated with wood preservative. The cladding is a traditional material that is not in keeping with the Listed Building, heritage characteristics of the station. It is proposed that this cladding is replaced with alternatives that complement the style of the building.

The handles of the building include several cases of hidden repair work, which is to be cleaned and reinforced by the removal of redundant elements of the station. The handles of the building will be replaced with alternatives that complement the style of the building.

Existing Finishes in Ticket Hall

Existing Ticket Hall Floor Finishes

Existing Finishes on stairs

Existing Floor Finishes in Train Shed

LU Heritage Light Fittings

Existing Finishes in Ticket Hall

Threshold between Ticket Hall and Footbridges

4.2 Internal Refurbishment

As the station building is classified as Grade II listed by English Heritage, the refurbishment proposals focus on enhancing the original character of the building. The following is a description of proposed enhancements to internal finishes:

- The ceramic floor tiles through the public areas of the ticket hall are in poor condition and mismatching. It is proposed that the ticket hall floor is retiled with ceramic tiles coloured to suit the historic livery at the station.
- The wall tiles in the ticket hall are also in poor condition and not in keeping with the era in which the building was constructed. It is proposed that the walls are retiled with LU heritage glazed tiles.
- The painted finish on the upper level of the walls and soffit in the ticket hall require repainting.
- There are several areas of redundant services in the ticket hall that require removing, including a disused public telephone.
- It is recommended that all redundant doors, windows and plant in the ticket hall are replaced and controlled.
- The heritage light fittings in the ticket hall require cleaning and repairs.

Aspects of ticket hall cleaning and repair.
Appendix G Junction Modelling

TML

TML Viewer 3.1 AD: V: \SeaGrave Road Car Park = 1111254\Analysis\PICADY\111101 Lillie Road SeaGrave,UK

TML LIMITED

---- COPYLEFT 2004

CAPACITIES, QUEUES, AND DELAYS AT 3 ON (WAR) MAJOR/REGION JUNCTIONS

PICADY 5.9 ANALYSIS PROGRAM

RELEASE 3.9

JUNE 2004

ADAPTED FROM PICADY/3 WHICH IS COPYRIGHT

BY PERMISSION OF THE CONTROLLER OF HMSO

THE USER OF THIS COMPUTER PROGRAM FOR THE SOLUTION OF AN ENGINEERING PROBLEM IS

DUE NO WAY RELIEVED OF HIS RESPONSIBILITY FOR THE CORRECTNESS OF THE SOLUTION

Run with file:

"V:\SeaGrave Road Car Park = 1111254\Analysis\PICADY\111101 Lillie Road SeaGrave,UK"

on your computer at 14:56:18 on Tuesday, 1 November 2011

RUN INFORMATION

RUN TITLE: Lillie Road / SeaGrave Road

LOCATION: 01/11/11

CLIENT:

ENGINEER: ukpa002

JOB NUMBER:

STATUS:

DESCRIPTION:

MAJOR/REGION JUNCTION CAPACITY AND DELAY

INPUT DATA

MAJOR ROAD (ARM C) MAJOR ROAD (ARM A)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
</tbody>
</table>

MINOR ROAD (ARM B)

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
</tbody>
</table>

ARM A IS Lillie Road [E]

ARM B IS SeaGrave Road [B]

ARM C IS Lillie Road [W]

STREAM LABELLING CONVENTION

STREAM A&B CONTAINS TRAFFIC GOING FROM ARM A TO ARM B

STREAM B&AC CONTAINS TRAFFIC GOING FROM ARM B TO ARM A AND TO ARM C

ETC.
TLisLoading

TL VIEWER 3.1 AD yi:\Seaview Road Car Park = 1114125\\ANALYSIS\\EXTRA\\111101 Lillie Road SeaGrave,\no =

TIME | **(MIN/HR)** | **CAPACITY** | **FLOW** | **QUEUE** | **PERCENT** | **PER AVENING** | **I**

I | **III** | **IV** | **V** | **VI** | **VII** | **VIII** | **IX** | **X** | **XI** |

11.30 | 11.45 | 1.11 | 5.14 | 0.34 | 0.24 | 0.24 | 3.4 | 0.21 | 1 |
1 | **B** | **A** | 0.31 | 12.14 | 0.04 | 0.11 | 0.11 | 1 | 0.09 | 1 |
1 | **C** | **A** | 5.52 | | | | | | | 1 |
1 | **A** | **A** | 1.33 | | | | | | | 1 |
1 | **A** | **A** | 1.03 | | | | | | | 1 |

I | **III** | **IV** | **V** | **VI** | **VII** | **VIII** | **IX** | **X** | **XI** |

11.45 | 11.50 | 0.11 | 5.14 | 0.34 | 0.24 | 0.24 | 3.4 | 0.21 | **X** |
1 | **B** | **A** | 0.31 | 12.14 | 0.04 | 0.11 | 0.11 | 1 | 0.09 | **X** |
1 | **C** | **A** | 5.52 | | | | | | | **X** |
1 | **A** | **A** | 1.33 | | | | | | | **X** |
1 | **A** | **A** | 1.03 | | | | | | | **X** |

MANAGER: NO MARGINAL ANALYSIS OF CAPACITIES AS MAJOR ROAD BLOCKING MAY OCCUR

QUEUE FOR STREAM B=AC

TIME SEGMENT NO. OF ENDING VEHICLES IN QUEUE

| **I** | **II** | **III** | **IV** | **V** | **VI** | **VII** | **VIII** | **IX** | **X** | **XI** |

11.15 | 0.2 | | | | | | | | | |
11.30 | 0.2 | | | | | | | | | |
11.45 | 0.2 | | | | | | | | | |
18.00 | 0.2 | | | | | | | | | |

Queueing Delay Information Over Whole Period

**STREAM I TOTAL DEMAND | QUERIES | I | I | I | I | I | I | I | I | I **

I | **II** | **III** | **IV** | **V** | **VI** | **VII** | **VIII** | **IX** | **X** | **XI** |

I | **II** | **III** | **IV** | **V** | **VI** | **VII** | **VIII** | **IX** | **X** | **XI** |

I | **II** | **III** | **IV** | **V** | **VI** | **VII** | **VIII** | **IX** | **X** | **XI** |

2 | **B=AC** | 37.0 | 33.2 | 27.2 | 14.2 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 |
1 | **C=AB** | 48.2 | 48.2 | 1.0 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 |
1 | **C=AC** | 33.0 | 33.0 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
1 | **A** | 83.0 | 83.0 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
1 | **A** | 255.7 | 255.7 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
1 | **ALL** | 158.8 | 158.8 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |

Delay is that occurring only within the time period,

Exclusively Delay Includes Delay suffered by Vehicles which are still Queueing after the end of the time period,

These will only be significant if there is a Large Queue Remaining at the end of the time period.

END OF JOB

(31 at 17:01:00 on 01/11/2011)
GEOMETRIC DATA

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central Reserve Width</td>
<td>1,00 m</td>
<td></td>
</tr>
<tr>
<td>Major Road Right Turn</td>
<td>2,00 m</td>
<td></td>
</tr>
<tr>
<td>Visibility</td>
<td>100,0</td>
<td></td>
</tr>
<tr>
<td>Restrict Traffic</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Median Road</td>
<td>3,00 m</td>
<td></td>
</tr>
<tr>
<td>Lane 2 Meters</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Slopes and intercepts

Streams may be combined, in which case capacity will be adjusted.

TRAFFIC DEMAND DATA

Demand set: Sensitivity Test AM

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Begin</th>
<th>End</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:00 to 09:00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Length of time period = 60 MINUTES, Length of time segment = 15 MINUTES

Demand flow profiles are input directly.

TURING PROPORTIONS

Percentage of H, V, S

- **H:** 0.00
- **V:** 0.00
- **S:** 1.00

TURING PROPORTIONS ARE CALCULATED FROM TURING CURVE DATA

<table>
<thead>
<tr>
<th>Time</th>
<th>Demand</th>
<th>Capacity</th>
<th>Flow</th>
<th>Query</th>
<th>Delay</th>
<th>Geometric Delay</th>
<th>Average Delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:00-08:15</td>
<td>2,81</td>
<td>5,88</td>
<td>0,478</td>
<td>0,10</td>
<td>13,4</td>
<td>0,33</td>
<td></td>
</tr>
<tr>
<td>08:15-08:30</td>
<td>2,81</td>
<td>5,88</td>
<td>0,478</td>
<td>0,10</td>
<td>13,4</td>
<td>0,33</td>
<td></td>
</tr>
<tr>
<td>08:30-08:45</td>
<td>2,81</td>
<td>5,88</td>
<td>0,478</td>
<td>0,10</td>
<td>13,4</td>
<td>0,33</td>
<td></td>
</tr>
<tr>
<td>08:45-09:00</td>
<td>2,81</td>
<td>5,88</td>
<td>0,478</td>
<td>0,10</td>
<td>13,4</td>
<td>0,33</td>
<td></td>
</tr>
</tbody>
</table>
Traffic Demand Data

- **Traffic Segment**: 1
 - **Flow Scale**:
 - 1A: 100
 - 1B: 100
 - **Demand Set**: Sensitivity Test PM
 - **Time Period Begins**: 11:00
 - **End of Time Period**: 18:00
 - **Length of Time Period**: 60 minutes
 - **Length of Time Segment**: 15 minutes
 - **Demand Flow Profiles**: Input Directly

Queue and Delay Information Over Whole Period

<table>
<thead>
<tr>
<th>Stream</th>
<th>Total Demand</th>
<th>Queue Delay</th>
<th>Percentage of Total Demand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1314.1</td>
<td>109.1</td>
<td>8.29%</td>
</tr>
<tr>
<td>2</td>
<td>1194.1</td>
<td>119.1</td>
<td>9.89%</td>
</tr>
<tr>
<td>3</td>
<td>1312.0</td>
<td>131.0</td>
<td>10.01%</td>
</tr>
<tr>
<td>4</td>
<td>1312.0</td>
<td>131.0</td>
<td>10.01%</td>
</tr>
<tr>
<td>ALL</td>
<td>5194.4</td>
<td>559.2</td>
<td>10.76%</td>
</tr>
</tbody>
</table>

Slopes and Intercept

<table>
<thead>
<tr>
<th>Streams</th>
<th>SLOPE</th>
<th>INTERCEPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stream A</td>
<td>0.25</td>
<td>0.10</td>
</tr>
<tr>
<td>Stream B</td>
<td>0.23</td>
<td>0.09</td>
</tr>
<tr>
<td>Stream C</td>
<td>0.23</td>
<td>0.09</td>
</tr>
<tr>
<td>Stream D</td>
<td>0.23</td>
<td>0.09</td>
</tr>
</tbody>
</table>

Note: These values do not allow for any site-specific corrections.
THE USE OF THIS COMPUTER PROGRAM FOR THE SOLUTION OF AN ENGINEERING PROBLEM IS IN NO WAY RELIEVED OF HIS RESPONSIBILITY FOR THE CORRECTNESS OF THE SOLUTION

Run with file: "Ye\SeaBrave Road Car Park = 1114125\analysis\fcaady\111101 Lillie Road SeaBrave Survey\vi" (live-non-tee.left) at 11:24:24 on Tuesday, 1 November 2011

RUN INFORMATION

RUN TITLE: Lillie Road / SeaBrave Road
LOCATION: SeaBrave
DATE: 01/11/11
CLIENT: unknown
DEPARTMENT: unknown
STATUS: unknown
DESCRIPTION: unknown
MAJOR/MEDIUM JUNCTION CAPACITY AND DELAY

INPUT DATA

MAJOR ROAD (ARM C) MAJOR ROAD (ARM A)
I I I
I I I
I I I
I I I
MEDIUM ROAD (ARM B)

ARM A IS Lillie Road (E)
ARM B IS SeaBrave Road (S)
ARM C IS Lillie Road (M)

STREAM LABELLING COMMENT

STREAM B-AC CONTAINS TRAFFIC GOING FROM ARM A TO ARM B STREAM B-AC CONTAINS TRAFFIC GOING FROM ARM B TO ARM A AND TO ARM C ETC.

* DELAY IS THAT OCCURRING ONLY WITHIN THE TIME PERIOD,
* INCLUSIVE DELAY INCLUDES DELAY SUFFERED BY VEHICLES WHICH ARE STILL QUEuing AFTER THE END OF THE TIME PERIOD,
* THESE MUST ONLY BE SIGNIFICANTLY DIFFERENT IF THERE IS A LARGE QUEUE REMAINING AT THE END OF THE TIME PERIOD.

END OF JOB

(Printed at 17:14:24 on 01/11/2011)
GEOMETRIC DATA

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>M</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>CENTRAL RESERVE WIDTH</td>
<td>0.00 m</td>
<td>0.00 m</td>
<td>0.00 m</td>
</tr>
<tr>
<td>TOTAL MAJOR ROAD WIDTH</td>
<td>12.00 m</td>
<td>12.00 m</td>
<td>12.00 m</td>
</tr>
<tr>
<td>MAJOR ROAD RIGHT TURN</td>
<td>2.00 m</td>
<td>2.00 m</td>
<td>2.00 m</td>
</tr>
<tr>
<td>VISIBILITY (VC(m))</td>
<td>100.0 m</td>
<td>100.0 m</td>
<td>100.0 m</td>
</tr>
<tr>
<td>REQUIRED TRAFFIC</td>
<td>120</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>MEASURED VISIBILITY</td>
<td>120</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>LANE 1 WIDTH</td>
<td>3.00 m</td>
<td>3.00 m</td>
<td>3.00 m</td>
</tr>
<tr>
<td>LANE 2 WIDTH</td>
<td>0.00 m</td>
<td>0.00 m</td>
<td>0.00 m</td>
</tr>
</tbody>
</table>

TURNS AND INTERCEPTS

Streams may be combined, in which case capacity will be adjusted.

<table>
<thead>
<tr>
<th>Intercept for Slope for Opposing</th>
<th>Slope for Opposing</th>
</tr>
</thead>
<tbody>
<tr>
<td>I Stream A0</td>
<td>Stream A1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intercept for Slope for Opposing</th>
<th>Slope for Opposing</th>
</tr>
</thead>
<tbody>
<tr>
<td>I Stream B0</td>
<td>Stream B1</td>
</tr>
</tbody>
</table>

TRAFFIC DEMAND DATA

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>M</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>B</td>
<td>100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sensitivity Test: AM

- TIME PERIOD BEGINS 08.00 AND ENDS 09.00
- LENGTH OF TIME PERIOD = 60 MINUTES
- LENGTH OF TIME SEGMENT = 15 MINUTES

Demand flow profiles are input directly.

TURNING PROPORTIONS

<table>
<thead>
<tr>
<th>TIME</th>
<th>TOTAL</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:00</td>
<td>64.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08:02</td>
<td>64.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08:04</td>
<td>64.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08:06</td>
<td>64.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08:08</td>
<td>64.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

QUEUE AND DELAY INFORMATION FOR EACH 15 MIN TIME SEGMENT

For Demand Set: Sensitivity Test AM

<table>
<thead>
<tr>
<th>TIME</th>
<th>FLOW [V/HR]</th>
<th>QUEUE [V/HR]</th>
<th>QUEUE [V/HR]</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:00</td>
<td>64.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08:02</td>
<td>64.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08:04</td>
<td>64.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08:06</td>
<td>64.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08:08</td>
<td>64.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AVERAGE DELAY [V/HR]
Traffic Demand Data

<table>
<thead>
<tr>
<th>Time Segment No. of Ending Vehicles</th>
<th>Stream A</th>
<th>Stream B</th>
<th>Stream C</th>
<th>Stream D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Period: 11:00 to 11:15</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Demand Flow Profiles are Input Directly:

Queuing and Delay Information for Each 15 Min Time Segment

<table>
<thead>
<tr>
<th>Time Segment</th>
<th>Stream A</th>
<th>Stream B</th>
<th>Stream C</th>
<th>Stream D</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:00-11:15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Queuing and Delay Information for Ending Vehicles

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Stream A</th>
<th>Stream B</th>
<th>Stream C</th>
<th>Stream D</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:00-11:15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Queuing and Delay Information for Pedestrian Count

<table>
<thead>
<tr>
<th>Time Segment</th>
<th>Stream A</th>
<th>Stream B</th>
<th>Stream C</th>
<th>Stream D</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:00-11:15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Average Queuing Delay

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Stream A</th>
<th>Stream B</th>
<th>Stream C</th>
<th>Stream D</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:00-11:15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Average Geometric Delay

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Stream A</th>
<th>Stream B</th>
<th>Stream C</th>
<th>Stream D</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:00-11:15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Average Delay

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Stream A</th>
<th>Stream B</th>
<th>Stream C</th>
<th>Stream D</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:00-11:15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Basic Results Summary

User and Project Details

- **Title:**
- **Location:**
- **File name:** 110526_Finchborough_Rd_Old_Brompton_RdPB.lsgx
- **Author:**
- **Company:**
- **Address:**
- **Controller:** Generic
- **SCN:**
- **Notes:**

Scenario 1: AM Base

- **Staging Plan:** Staging Plan 1: "Staging Plan No. 1"
- **Flow Group:** 1: "AM Base"

Junction Layout Diagram

[Diagram showing the junction layout diagram]

End of Job Details

- **Printed at:** 17:24:31 on 01/11/2013
<table>
<thead>
<tr>
<th>Link</th>
<th>Link Desc</th>
<th>Full Path</th>
<th>Error Phase</th>
<th>Source Direction</th>
<th>Destination Direction</th>
<th>Max Set</th>
<th>Ave Set</th>
<th>Ave Set Path Freq</th>
<th>Ave Set Path Avg</th>
<th>Capacity (Mbps)</th>
<th>Dirty %</th>
<th>Trace Mode</th>
<th>Trace Breaks</th>
<th>Time to Break (ms)</th>
<th>Time to Break (Frame)</th>
<th>Trace Breaks</th>
<th>Trace Breaks</th>
<th>Trace Breaks</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Through Break (Brk)</td>
<td>0 0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>Through Break (Brk)</td>
<td>0 0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>Through Break (Brk)</td>
<td>0 0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>Through Break (Brk)</td>
<td>0 0</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>Through Break (Brk)</td>
<td>0 0</td>
<td>0</td>
</tr>
</tbody>
</table>

Basic Results Summary
Basic Results Summary

Scenario 3: "AM 2021"
Staging Plan 1: "Staging Plan No. 1"
Flow Group 3: "AM 2021"

Junction Layout Diagram

Link Results

Link	Veh Class	Left	Full	Lane	Left Lane	Right	Full Right	Max Sel	Ave Sel	Thru Sel	Dg Sel	Percent	Avg Sel	Max Sel	Percent	Time Avg	Time Median	Time Std Dev	Time Max	Time Min	Time Sel	Time Percent	
11																							
12																							
13																							
14																							
15																							

Sheet 1
Basic Results Summary

Scenario 6: "PM 2021 Future + Dev"
Staging Plan 1: "Staging Plan No. 1"
Flow Group 6: "PM 2021 Future + Dev"

Junction Layout Diagram

Link Results